Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Signatures of adaptation to a monocot host in the plant-parasitic cyst nematode Heterodera sacchari.

Identifieur interne : 000052 ( Main/Exploration ); précédent : 000051; suivant : 000053

Signatures of adaptation to a monocot host in the plant-parasitic cyst nematode Heterodera sacchari.

Auteurs : Somnath S. Pokhare [Allemagne, Inde] ; Peter Thorpe [Royaume-Uni] ; Pete Hedley [Royaume-Uni] ; Jennifer Morris [Royaume-Uni] ; Samer S. Habash [Allemagne] ; Abdelnaser Elashry [Allemagne] ; Sebastian Eves-Van Den Akker [Royaume-Uni] ; Florian M W. Grundler [Allemagne] ; John T. Jones [Royaume-Uni]

Source :

RBID : pubmed:32623778

Abstract

Interactions between plant-parasitic nematodes and their hosts are mediated by effectors, i.e. secreted proteins that manipulate the plant to the benefit of the pathogen. To understand the role of effectors in host adaptation in nematodes, we analysed the transcriptome of Heterodera sacchari, a cyst nematode parasite of rice (Oryza sativa) and sugarcane (Saccharum officinarum). A multi-gene phylogenetic analysis showed that H. sacchari and the cereal cyst nematode Heterodera avenae share a common evolutionary origin and that they evolved to parasitise monocot plants from a common dicot-parasitic ancestor. We compared the effector repertoires of H. sacchari with those of the dicot parasites Heterodera glycines and Globodera rostochiensis to understand the consequences of this transition. While, in general, effector repertoires are similar between the species, comparing effectors and non-effectors of H. sacchari and G. rostochiensis shows that effectors have accumulated more mutations than non-effectors. Although most effectors show conserved spatiotemporal expression profiles and likely function, some H. sacchari effectors are adapted to monocots. This is exemplified by the plant-peptide hormone mimics, the CLAVATA3/EMBRYO SURROUNDING REGION-like (CLE) effectors. Peptide hormones encoded by H. sacchari CLE effectors are more similar to those from rice than those from other plants, or those from other plant-parasitic nematodes. We experimentally validated the functional significance of these observations by demonstrating that CLE peptides encoded by H. sacchari induce a short root phenotype in rice, whereas those from a related dicot parasite do not. These data provide a functional example of effector evolution that co-occurred with the transition from a dicot-parasitic to a monocot-parasitic lifestyle.

DOI: 10.1111/tpj.14910
PubMed: 32623778


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Signatures of adaptation to a monocot host in the plant-parasitic cyst nematode Heterodera sacchari.</title>
<author>
<name sortKey="Pokhare, Somnath S" sort="Pokhare, Somnath S" uniqKey="Pokhare S" first="Somnath S" last="Pokhare">Somnath S. Pokhare</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Crop Protection Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Crop Protection Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753006</wicri:regionArea>
<wicri:noRegion>753006</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Thorpe, Peter" sort="Thorpe, Peter" uniqKey="Thorpe P" first="Peter" last="Thorpe">Peter Thorpe</name>
<affiliation wicri:level="1">
<nlm:affiliation>The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The James Hutton Institute, Invergowrie, Dundee, DD2 5DA</wicri:regionArea>
<wicri:noRegion>DD2 5DA</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TZ</wicri:regionArea>
<wicri:noRegion>KY16 9TZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hedley, Pete" sort="Hedley, Pete" uniqKey="Hedley P" first="Pete" last="Hedley">Pete Hedley</name>
<affiliation wicri:level="1">
<nlm:affiliation>The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The James Hutton Institute, Invergowrie, Dundee, DD2 5DA</wicri:regionArea>
<wicri:noRegion>DD2 5DA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Morris, Jennifer" sort="Morris, Jennifer" uniqKey="Morris J" first="Jennifer" last="Morris">Jennifer Morris</name>
<affiliation wicri:level="1">
<nlm:affiliation>The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The James Hutton Institute, Invergowrie, Dundee, DD2 5DA</wicri:regionArea>
<wicri:noRegion>DD2 5DA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Habash, Samer S" sort="Habash, Samer S" uniqKey="Habash S" first="Samer S" last="Habash">Samer S. Habash</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Elashry, Abdelnaser" sort="Elashry, Abdelnaser" uniqKey="Elashry A" first="Abdelnaser" last="Elashry">Abdelnaser Elashry</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Eves Van Den Akker, Sebastian" sort="Eves Van Den Akker, Sebastian" uniqKey="Eves Van Den Akker S" first="Sebastian" last="Eves-Van Den Akker">Sebastian Eves-Van Den Akker</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA</wicri:regionArea>
<orgName type="university">Université de Cambridge</orgName>
<placeName>
<settlement type="city">Cambridge</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Angleterre de l'Est</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Grundler, Florian M W" sort="Grundler, Florian M W" uniqKey="Grundler F" first="Florian M W" last="Grundler">Florian M W. Grundler</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jones, John T" sort="Jones, John T" uniqKey="Jones J" first="John T" last="Jones">John T. Jones</name>
<affiliation wicri:level="1">
<nlm:affiliation>The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The James Hutton Institute, Invergowrie, Dundee, DD2 5DA</wicri:regionArea>
<wicri:noRegion>DD2 5DA</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9TZ</wicri:regionArea>
<wicri:noRegion>KY16 9TZ</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32623778</idno>
<idno type="pmid">32623778</idno>
<idno type="doi">10.1111/tpj.14910</idno>
<idno type="wicri:Area/Main/Corpus">000202</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000202</idno>
<idno type="wicri:Area/Main/Curation">000202</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000202</idno>
<idno type="wicri:Area/Main/Exploration">000202</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Signatures of adaptation to a monocot host in the plant-parasitic cyst nematode Heterodera sacchari.</title>
<author>
<name sortKey="Pokhare, Somnath S" sort="Pokhare, Somnath S" uniqKey="Pokhare S" first="Somnath S" last="Pokhare">Somnath S. Pokhare</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Crop Protection Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Crop Protection Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753006</wicri:regionArea>
<wicri:noRegion>753006</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Thorpe, Peter" sort="Thorpe, Peter" uniqKey="Thorpe P" first="Peter" last="Thorpe">Peter Thorpe</name>
<affiliation wicri:level="1">
<nlm:affiliation>The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The James Hutton Institute, Invergowrie, Dundee, DD2 5DA</wicri:regionArea>
<wicri:noRegion>DD2 5DA</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TZ</wicri:regionArea>
<wicri:noRegion>KY16 9TZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hedley, Pete" sort="Hedley, Pete" uniqKey="Hedley P" first="Pete" last="Hedley">Pete Hedley</name>
<affiliation wicri:level="1">
<nlm:affiliation>The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The James Hutton Institute, Invergowrie, Dundee, DD2 5DA</wicri:regionArea>
<wicri:noRegion>DD2 5DA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Morris, Jennifer" sort="Morris, Jennifer" uniqKey="Morris J" first="Jennifer" last="Morris">Jennifer Morris</name>
<affiliation wicri:level="1">
<nlm:affiliation>The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The James Hutton Institute, Invergowrie, Dundee, DD2 5DA</wicri:regionArea>
<wicri:noRegion>DD2 5DA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Habash, Samer S" sort="Habash, Samer S" uniqKey="Habash S" first="Samer S" last="Habash">Samer S. Habash</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Elashry, Abdelnaser" sort="Elashry, Abdelnaser" uniqKey="Elashry A" first="Abdelnaser" last="Elashry">Abdelnaser Elashry</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Eves Van Den Akker, Sebastian" sort="Eves Van Den Akker, Sebastian" uniqKey="Eves Van Den Akker S" first="Sebastian" last="Eves-Van Den Akker">Sebastian Eves-Van Den Akker</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA</wicri:regionArea>
<orgName type="university">Université de Cambridge</orgName>
<placeName>
<settlement type="city">Cambridge</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Angleterre de l'Est</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Grundler, Florian M W" sort="Grundler, Florian M W" uniqKey="Grundler F" first="Florian M W" last="Grundler">Florian M W. Grundler</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jones, John T" sort="Jones, John T" uniqKey="Jones J" first="John T" last="Jones">John T. Jones</name>
<affiliation wicri:level="1">
<nlm:affiliation>The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The James Hutton Institute, Invergowrie, Dundee, DD2 5DA</wicri:regionArea>
<wicri:noRegion>DD2 5DA</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9TZ</wicri:regionArea>
<wicri:noRegion>KY16 9TZ</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Plant journal : for cell and molecular biology</title>
<idno type="eISSN">1365-313X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Interactions between plant-parasitic nematodes and their hosts are mediated by effectors, i.e. secreted proteins that manipulate the plant to the benefit of the pathogen. To understand the role of effectors in host adaptation in nematodes, we analysed the transcriptome of Heterodera sacchari, a cyst nematode parasite of rice (Oryza sativa) and sugarcane (Saccharum officinarum). A multi-gene phylogenetic analysis showed that H. sacchari and the cereal cyst nematode Heterodera avenae share a common evolutionary origin and that they evolved to parasitise monocot plants from a common dicot-parasitic ancestor. We compared the effector repertoires of H. sacchari with those of the dicot parasites Heterodera glycines and Globodera rostochiensis to understand the consequences of this transition. While, in general, effector repertoires are similar between the species, comparing effectors and non-effectors of H. sacchari and G. rostochiensis shows that effectors have accumulated more mutations than non-effectors. Although most effectors show conserved spatiotemporal expression profiles and likely function, some H. sacchari effectors are adapted to monocots. This is exemplified by the plant-peptide hormone mimics, the CLAVATA3/EMBRYO SURROUNDING REGION-like (CLE) effectors. Peptide hormones encoded by H. sacchari CLE effectors are more similar to those from rice than those from other plants, or those from other plant-parasitic nematodes. We experimentally validated the functional significance of these observations by demonstrating that CLE peptides encoded by H. sacchari induce a short root phenotype in rice, whereas those from a related dicot parasite do not. These data provide a functional example of effector evolution that co-occurred with the transition from a dicot-parasitic to a monocot-parasitic lifestyle.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32623778</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-313X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>103</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2020</Year>
<Month>08</Month>
</PubDate>
</JournalIssue>
<Title>The Plant journal : for cell and molecular biology</Title>
<ISOAbbreviation>Plant J</ISOAbbreviation>
</Journal>
<ArticleTitle>Signatures of adaptation to a monocot host in the plant-parasitic cyst nematode Heterodera sacchari.</ArticleTitle>
<Pagination>
<MedlinePgn>1263-1274</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/tpj.14910</ELocationID>
<Abstract>
<AbstractText>Interactions between plant-parasitic nematodes and their hosts are mediated by effectors, i.e. secreted proteins that manipulate the plant to the benefit of the pathogen. To understand the role of effectors in host adaptation in nematodes, we analysed the transcriptome of Heterodera sacchari, a cyst nematode parasite of rice (Oryza sativa) and sugarcane (Saccharum officinarum). A multi-gene phylogenetic analysis showed that H. sacchari and the cereal cyst nematode Heterodera avenae share a common evolutionary origin and that they evolved to parasitise monocot plants from a common dicot-parasitic ancestor. We compared the effector repertoires of H. sacchari with those of the dicot parasites Heterodera glycines and Globodera rostochiensis to understand the consequences of this transition. While, in general, effector repertoires are similar between the species, comparing effectors and non-effectors of H. sacchari and G. rostochiensis shows that effectors have accumulated more mutations than non-effectors. Although most effectors show conserved spatiotemporal expression profiles and likely function, some H. sacchari effectors are adapted to monocots. This is exemplified by the plant-peptide hormone mimics, the CLAVATA3/EMBRYO SURROUNDING REGION-like (CLE) effectors. Peptide hormones encoded by H. sacchari CLE effectors are more similar to those from rice than those from other plants, or those from other plant-parasitic nematodes. We experimentally validated the functional significance of these observations by demonstrating that CLE peptides encoded by H. sacchari induce a short root phenotype in rice, whereas those from a related dicot parasite do not. These data provide a functional example of effector evolution that co-occurred with the transition from a dicot-parasitic to a monocot-parasitic lifestyle.</AbstractText>
<CopyrightInformation>© 2020 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pokhare</LastName>
<ForeName>Somnath S</ForeName>
<Initials>SS</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Crop Protection Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thorpe</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hedley</LastName>
<ForeName>Pete</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Morris</LastName>
<ForeName>Jennifer</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Habash</LastName>
<ForeName>Samer S</ForeName>
<Initials>SS</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Elashry</LastName>
<ForeName>Abdelnaser</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Eves-van den Akker</LastName>
<ForeName>Sebastian</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grundler</LastName>
<ForeName>Florian M W</ForeName>
<Initials>FMW</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jones</LastName>
<ForeName>John T</ForeName>
<Initials>JT</Initials>
<Identifier Source="ORCID">0000-0003-2074-0551</Identifier>
<AffiliationInfo>
<Affiliation>The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BB/R011311/1</GrantID>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>BB/S006397/1</GrantID>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>105621/Z/14/Z</GrantID>
<Acronym>WT_</Acronym>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant J</MedlineTA>
<NlmUniqueID>9207397</NlmUniqueID>
<ISSNLinking>0960-7412</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Plant J. 2020 Aug;103(4):1261-1262</RefSource>
<PMID Version="1">32805072</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Heterodera sacchari </Keyword>
<Keyword MajorTopicYN="Y">Peptide hormone mimics</Keyword>
<Keyword MajorTopicYN="Y">effectors</Keyword>
<Keyword MajorTopicYN="Y">transcriptomics</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>01</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32623778</ArticleId>
<ArticleId IdType="doi">10.1111/tpj.14910</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403-410.</Citation>
</Reference>
<Reference>
<Citation>Andrews, S. (2010) FastQC: a quality control tool for high throughput sequence data. Available at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Accessed 8 September 2017.</Citation>
</Reference>
<Reference>
<Citation>Ashburner, M., Ball, C.A., Blake, J.A. et al. (2000) Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25-29.</Citation>
</Reference>
<Reference>
<Citation>Bastian, M., Heymann, S. and Jacomy, M. (2009) Gephi: an open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media.</Citation>
</Reference>
<Reference>
<Citation>Blanc-Mathieu, R., Perfus-Barbeoch, L., Aury, J.M. et al. (2017) Hybridization and polyploidy enable genomic plasticity without sex in the most devastating plant-parasitic nematodes. PLoS Genet. 13(6), 1-36.</Citation>
</Reference>
<Reference>
<Citation>Bolger, A.M., Lohse, M. and Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114-2120.</Citation>
</Reference>
<Reference>
<Citation>Buchfink, B., Xie, C. and Huson, D.H. (2014) Fast and sensitive protein alignment using DIAMOND. Nat. Methods, 12, 59-60.</Citation>
</Reference>
<Reference>
<Citation>Burke, M., Scholl, E.H., Bird, D.M. et al. (2015) The plant parasite Pratyenchus coffeae carries a minimal nematode genome. Nematology, 17, 621-637.</Citation>
</Reference>
<Reference>
<Citation>C. elegans sequencing consortium. (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science, 282, 2012-2018.</Citation>
</Reference>
<Reference>
<Citation>CABI (2014) Heterodera sacchari. 139, 43-45.</Citation>
</Reference>
<Reference>
<Citation>Chen, S., Lang, P., Chronis, D., Zhang, S., De Jong, W.S., Mitchum, M.G. and Wang, X. (2015) In planta processing and glycosylation of a nematode CLAVATA3/ENDOSPERM SURROUNDING REGION-like effector and its interaction with a host CLAVATA2-like receptor to promote parasitism. Plant Physiol. 167, 262-272.</Citation>
</Reference>
<Reference>
<Citation>Chronis, D., Chen, S., Lu, S., Hewezi, T., Carpenter, S.C.D., Loria, R., Baum, T.J. and Wang, X. (2013) A ubiquitin carboxyl extension protein secreted from a plant-parasitic nematode Globodera rostochiensis is cleaved in planta to promote plant parasitism. Plant J. 74, 185-196.</Citation>
</Reference>
<Reference>
<Citation>Cotton, J.A., Lilley, C.J., Jones, L.M. et al. (2014) The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode. Genome Biol. 15, R43.</Citation>
</Reference>
<Reference>
<Citation>Cobb, N.A. (1918) Estimating the nema population of soil, with special reference to the sugar-beet and root-gall nemas, Heterodera schachtii Schmidt and Heterodera radicicola (Greef) Müller and with a description of Tylencholaimus aequalis n. sp. Washington, DC, USA: National Government Printing Office.</Citation>
</Reference>
<Reference>
<Citation>Conesa, A., Götz, S., García-Gómez, J.M., Terol, J., Talón, M. and Robles, M. (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21, 3674-3676.</Citation>
</Reference>
<Reference>
<Citation>Craig, J.P., Bekal, S., Hudson, M., Domier, L., Niblack, T. and Lambert, K.N. (2008) Analysis of a horizontally transferred pathway involved in vitamin B6 biosynthesis from the soybean cyst nematode Heterodera glycines. Mol. Biol. Evol. 25, 2085-2098.</Citation>
</Reference>
<Reference>
<Citation>Danchin, E.G.J., Rosso, M.N., Vieira, P., de Almeida-Engler, J., Coutinho, P.M., Henrissat, B. and Abad, P. (2010) Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proc. Natl Acad. Sci. USA, 107(41), 17651-17656.</Citation>
</Reference>
<Reference>
<Citation>Danchin, E.G.J., Guzeeva, E., Mantelin, S., Berepiki, A. and Jones, J.T. (2016) Horizontal gene transfer from bacteria has enabled the plant-parasitic nematode Globodera pallida to feed on host-derived sucrose. Mol. Biol. Evol. 33, 1571-1579.</Citation>
</Reference>
<Reference>
<Citation>Danchin, E.G.J., Perfus-Barbeoch, L., Rancurel, C. et al. (2017) The transcriptomes of Xiphinema index and Longidorus elongatus suggest independent acquisition of some plant parasitism genes by horizontal gene transfer in early-branching nematodes. Genes, 8(10), 287.</Citation>
</Reference>
<Reference>
<Citation>Dong, A., Stam, R., Cano, L.M. et al. (2014) Effector specialization in a lineage of the Irish Potato Famine Pathogen. Science, 343, 552-555.</Citation>
</Reference>
<Reference>
<Citation>Edgar, R.C. (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5, 113.</Citation>
</Reference>
<Reference>
<Citation>Espada, M., Silva, A.C., Eves-van den Akker, S., Cock, P.J.A., Mota, M. and Jones, J.T. (2016) Identification and characterization of parasitism genes from the pine wilt nematode Bursaphelenchus xylophilus reveals a multi-layered detoxification strategy. Mol. Plant Pathol. 17, 286-295.</Citation>
</Reference>
<Reference>
<Citation>Espada, M., Eves-van den Akker, S., Maier, T., Vijaypalani, P., Baum, T.J., Mota, M. and Jones, J.T. (2018) STATAWAARS: a promoter motif associated with the tissue-specific transcriptome of the major effector-producing glands of the plant-parasitic nematode Bursaphelenchus xylophilus. BMC Genom., 19, 553.</Citation>
</Reference>
<Reference>
<Citation>Eves-van den Akker, S. and Birch, P.R.J. (2016) Opening the effector protein toolbox for plant-parasitic cyst nematode interactions. Mol. Plant, 9, 1451-1453.</Citation>
</Reference>
<Reference>
<Citation>Eves-van den Akker, S., Laetsch, D.R., Thorpe, P. et al. (2016a) The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the bases of parasitism and virulence. Genome Biol. 17, 124.</Citation>
</Reference>
<Reference>
<Citation>Eves-van den Akker, S., Lilley, C.J., Yusup, H.B., Jones, J.T. and Urwin, P.E. (2016b) Functional C-terminally encoded plant peptide (CEP) hormone domains evolved de novo in the plant parasite Rotylenchulus reniformis. Mol. Plant Pathol. 17(8), 1265-1275.</Citation>
</Reference>
<Reference>
<Citation>Eves-van den Akker, S., Lilley, C.J., Jones, J.T. and Urwin, P.E. (2014a) Identification and characterisation of a hyper variable apoplastic effector gene family of G. pallida. PLoS Pathog. 10(9), e1004391.</Citation>
</Reference>
<Reference>
<Citation>Eves-van den Akker, S., Lilley, C.J., Danchin, E.G.J., Rancurel, C., Cock, P.J.A., Urwin, P.E. and Jones, J.T. (2014b) The transcriptome of Nacobbus aberrans reveals insights into the evolution of sedentary endoparasitism in plant-parasitic nematodes. Genome Biol. Evol. 6(9), 2181-2194.</Citation>
</Reference>
<Reference>
<Citation>Fiers, M.A., Hause, G., Boutilier, K.A., Casamitjana-Martinez, E., Weijers, D., Offringa, R., van der Geest, L., van Lookeren Campagne, M. and Liu, C.-M. (2004) Mis-expression of the CLV3/ESR-like gene CLE19 in Arabidopsis leads to a consumption of root meristem. Gene, 327, 37-49.</Citation>
</Reference>
<Reference>
<Citation>Finn, R.D., Clements, J. and Eddy, S.R. (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, W29-W37.</Citation>
</Reference>
<Reference>
<Citation>Gao, B., Allen, R., Maier, T., Davis, E.L., Baum, T.J. and Hussey, R.S. (2003) The parasitome of the phytonematode Heterodera glycines. Mol. Plant Microbe Interact. 16, 720-726.</Citation>
</Reference>
<Reference>
<Citation>Gheysen, G. and Mitchum, M.G. (2011) How nematodes manipulate plant development pathways for infection. Curr. Opin. Plant Biol. 14, 1-7.</Citation>
</Reference>
<Reference>
<Citation>Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R. and Zeng, Q. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644-652.</Citation>
</Reference>
<Reference>
<Citation>Haas, B.J., Papanicolaou, A., Yassour, M. et al. (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494.</Citation>
</Reference>
<Reference>
<Citation>Hahn, C., Bachmann, L. and Chevreux, B. (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads-a baiting and iterative mapping approach. Nucleic Acids Res. 41(13), e129.</Citation>
</Reference>
<Reference>
<Citation>Hewezi, T., Howe, P., Maier, T., Hussey, R.S., Mitchum, M.G., Davis, E.L. and Baum, T.J. (2008) Cellulose binding protein from the parasitic nematode Heterodera schachtii interacts with Arabidopsis pectin methylesterase: cooperative cell wall modification during parasitism. Plant Cell, 20, 3080-3093.</Citation>
</Reference>
<Reference>
<Citation>Jacob, J., Mitreva, M., Vanholme, B. and Gheysen, G. (2008) Exploring the transcriptome of the burrowing nematode Radopholus similis. Mol. Genet. Genomics, 280, 1-17.</Citation>
</Reference>
<Reference>
<Citation>Hillier, L.W., Miller, R.D., Baird, S.E., Chinwalla, A., Fulton, L.A., Koboldt, D.C. and Waterston, R.H. (2007) Comparison of C. elegans and C. briggsae genome sequences reveals extensive conservation of chromosome organization and synteny. PLoS Biol. 5(7), e167.</Citation>
</Reference>
<Reference>
<Citation>Jones, J.T., Furlanetto, C., Bakker, E., Banks, B., Blok, V.C., Chen, Q. and Prior, A. (2003) Characterisation of a chorismate mutase from the potato cyst nematode Globodera pallida. Mol. Plant Pathol. 4, 43-50.</Citation>
</Reference>
<Reference>
<Citation>Jones, J.T., Haegeman, A., Danchin, E.G.J. et al. (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 14, 946-961.</Citation>
</Reference>
<Reference>
<Citation>Jones, J.T. and Mitchum, M.G. (2018) Biology of effectors. In Cyst Nematodes (Perry, R.N., Moens, M. and Jones, J.T., eds). Wallingford: CABI, pp. 74-88.</Citation>
</Reference>
<Reference>
<Citation>Käll, L., Krogh, A. and Sonnhammer, E.L. (2007) Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Res. 35(Suppl 2), W429-W432.</Citation>
</Reference>
<Reference>
<Citation>Kikuchi, T., Cotton, J.A., Dalzell, J.J. et al. (2011) Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus. PLoS Pathog. 7(9), e1002219.</Citation>
</Reference>
<Reference>
<Citation>Kikuchi, T., Eves-van den Akker, S. and Jones, J.T. (2017) Genome evolution of plant-parasitic nematodes. Annu. Rev. Phytopathol. 55, 333-354.</Citation>
</Reference>
<Reference>
<Citation>Krogh, A., Larsson, B., Von Heijne, G. and Sonnhammer, E.L. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567-580.</Citation>
</Reference>
<Reference>
<Citation>Kumar, M., Gantasala, N.P., Roychowdhury, T. et al. (2014) De novo transcriptome sequencing and analysis of the cereal cyst nematode, Heterodera avenae. PLoS One, 9, e96311.</Citation>
</Reference>
<Reference>
<Citation>Kyndt, T., Fernandez, D. and Gheysen, G. (2014) Plant-parasitic nematode infections in rice: molecular and cellular insights. Annu. Rev. Phytopathol. 52, 135-153.</Citation>
</Reference>
<Reference>
<Citation>Lagesen, K., Hallin, P., Rødland, E.A., Staerfeldt, H.H., Rognes, T. and Ussery, D.W. (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100-3108.</Citation>
</Reference>
<Reference>
<Citation>Lee, C., Chronis, D., Kenning, C., Peret, B., Hewezi, T., Davis, E.L., Baum, T.J., Hussey, R.S., Bennet, M. and Mitchum, M.G. (2011) The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development. Plant Physiol. 155, 866-880.</Citation>
</Reference>
<Reference>
<Citation>Maier, T.R., Hewezi, T., Peng, J.Q. and Baum, T.J. (2013) Isolation of whole esophageal gland cells from plant-parasitic nematodes for transcriptome analyses and effector identification. Mol. Plant-Microbe Interact. 26, 31-35.</Citation>
</Reference>
<Reference>
<Citation>Mei, Y., Thorpe, P., Guzha, A., Haegeman, A., Blok, V.C., MacKenzie, K., Gheysen, G., Jones, J.T. and Mantelin, S. (2015) Only a small subset of the SPRY domain gene family in Globodera pallida is likely to encode effectors, two of which suppress host defences induced by the potato resistance gene Gpa2. Nematology, 17, 409-424.</Citation>
</Reference>
<Reference>
<Citation>Masonbrink, R., Maier, T.R., Muppirala, U., Seetharam, A.S., Lord, E., Juvale, P.S., Mimee, B. (2019) The genome of the soybean cyst nematode (Heterodera glycines) reveals complex patterns of duplications involved in the evolution of parasitism genes. BMC Genom., 20(1), 119.</Citation>
</Reference>
<Reference>
<Citation>Mei, Y., Wright, K.M., Haegeman, A., Bauters, L., Diaz-Granados, A., Goverse, A., Gheysen, G., Jones, J.T. and Mantelin, S. (2018) The Globodera pallida SPRYSEC effector GpSPRY-414-2 that suppresses plant defenses targets a regulatory component of the dynamic microtubule network. Front. Plant Sci. 9, 1019.</Citation>
</Reference>
<Reference>
<Citation>Mitchum, M.G., Wang, X. and Davis, E.L. (2008) Diverse and conserved roles of CLE peptides. Curr. Opin. Plant Biol. 11, 75-81.</Citation>
</Reference>
<Reference>
<Citation>Nicol, J.M., Turner, S.J., Coyne, D.L., den Nijs, L., Hockland, S. and Maafi, Z.T. (2011) Current nematode threats to world agriculture. In Genomics and Molecular Genetics of Plant-Nematode Interactions (Jones, J.T., Gheysen, G. and Fenoll, C., eds). Heidleberg, Germany: Springer, pp. 21-44.</Citation>
</Reference>
<Reference>
<Citation>Oelkers, K., Goffard, N., Weiller, G.F., Gresshoff, P.M., Mathesius, U. and Frickey, T. (2008) Bioinformatic analysis of the CLE signaling peptide family. BMC Plant Biol. 8(1), 1.</Citation>
</Reference>
<Reference>
<Citation>Opperman, C.H., Bird, D.M., Williamson, V.M. et al. (2008) Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism. Proc. Natl Acad. Sci. USA, 105(39), 14802-14807.</Citation>
</Reference>
<Reference>
<Citation>Park, B.H., Karpinets, T.V., Syed, M.H., Leuze, M.R. and Uberbacher, E.C. (2010) CAZymes Analysis Toolkit (CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. Glycobiology, 20, 1574-1584.</Citation>
</Reference>
<Reference>
<Citation>Parra, G., Bradnam, K. and Korf, I. (2007) CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics, 23, 1061-1067.</Citation>
</Reference>
<Reference>
<Citation>Perry, R.N., Moens, M. and Jones, J.T. (2018) Cyst Nematodes. Wallingford: CABI.</Citation>
</Reference>
<Reference>
<Citation>Pfaffl, M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 https://doi.org/10.1093</Citation>
</Reference>
<Reference>
<Citation>Pokhare, S.S., Habash, S.S., Jones, J.T., Elashry, A. and Grundler, F.M.W. (2019) In vitro life cycle of Heterodera sacchari on Pluronic gel. Nematology, 21, 573-579.</Citation>
</Reference>
<Reference>
<Citation>Popeijus, H., Overmars, H., Jones, J., Blok, V., Goverse, A., Helder, J., Schots, A., Bakker, J. and Smant, G. (2000) Degradation of plant cell walls by a nematode. Nature, 406, 36-37.</Citation>
</Reference>
<Reference>
<Citation>Petersen, T.N., Brunak, S., von Heijne, G. and Nielsen, H. (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods, 8, 785.</Citation>
</Reference>
<Reference>
<Citation>Phillips, W.S., Howe, D.K., Brown, A.M.V., Eves-van den Akker, S., Dettwyler, L., Denver, D.R. and Zasada, I.A. (2017) The draft genome of Globodera ellingtonae. J. Nematol. 49(2), 127-128.</Citation>
</Reference>
<Reference>
<Citation>Postma, W.J., Slootweg, E.J., Rehman, S. et al. (2012) The effector SPRYSEC-19 of Globodera rostochiensis suppresses CC-NB-LRR mediated disease resistance in plants. Plant Physiol. 16, 944-954.</Citation>
</Reference>
<Reference>
<Citation>Powell, S., Szklarczyk, D., Trachana, K. et al. (2012) eggNOG v3. 0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic Acids Res. 40(D1), D284-D289.</Citation>
</Reference>
<Reference>
<Citation>Qin, L., Kudla, U., Roze, E. et al. (2004) Identification of a functional expansin, a non-enzymatic cell wall-loosening agent, from the plant parasitic nematode Globodera rostochiensis. Nature, 427, 30.</Citation>
</Reference>
<Reference>
<Citation>Raffaele, S., Farrer, R.A., Cano, L.M. et al. (2010) Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science, 330, 1540-1543.</Citation>
</Reference>
<Reference>
<Citation>Replogle, A., Wang, J., Bleckmann, A., Hussey, R.S., Baum, T.J., Shinichiro, S., Davis, E.L., Wang, X., Simon, R. and Mitchum, M.G. (2011) Nematode CLE signaling in Arabidopsis requires CLAVATA2 and CORYNE. Plant J. 65, 430-440.</Citation>
</Reference>
<Reference>
<Citation>Replogle, A., Wang, J., Paolillo, V., Smeda, J., Kinoshita, A., Durbak, A., Tax, F.E., Wang, X., Sawa, S. and Mitchum, M.G. (2013) Synergistic interaction of CLAVATA1, CLAVATA2, and RECEPTOR-LIKE PROTEIN KINASE 2 in cyst nematode parasitism of Arabidopsis. Mol. Plant Microbe Interact. 26, 87-96.</Citation>
</Reference>
<Reference>
<Citation>Sacco, M.A., Koropacka, K., Grenier, E., Jaubert, M.J., Blanchard, A., Goverse, A., Smant, G. and Moffett, P. (2009) The cyst nematode SPRYSEC protein RBP-1 elicits Gpa2- and RanGAP2-dependent plant cell death. PLoS Pathog. 5, e1000564.</Citation>
</Reference>
<Reference>
<Citation>Schulze-Lefert, P. and Panstruga, R. (2011) A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci. 16, 117-125.</Citation>
</Reference>
<Reference>
<Citation>Siddique, S. and Grundler, F.M.W. (2018) Parasitic nematodes manipulate plant development to establish feeding sites. Curr. Opin. Microbiol. 46, 102-108.</Citation>
</Reference>
<Reference>
<Citation>Smant, G., Stokkermans, J.P., Yan, Y. et al. (1998) Endogenous cellulases in animals: isolation of beta-1, 4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc. Natl Acad. Sci. USA, 95, 4906-4911.</Citation>
</Reference>
<Reference>
<Citation>Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V. and Zdobnov, E.M. (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31, 3210-3212.</Citation>
</Reference>
<Reference>
<Citation>Sobczak, M. and Golinowski, W. (2011) Cyst nematodes and syncytia. In Genomics and Molecular Genetics of Plant-Nematode Interactions (Jones, J.T., Gheysen, G. and Fenoll, C., eds). Dordrecht, The Netherlands: Springer Academic Publishers, pp. 61-82.</Citation>
</Reference>
<Reference>
<Citation>Stam, R., Mantelin, S., McLellan, H. and Thilliez, G. (2014) The role of effectors in nonhost resistance to filamentous plant pathogens. Front. Plant Sci. 5, 582.</Citation>
</Reference>
<Reference>
<Citation>Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J.M. and Kelly, S. (2016) TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Res. 26, 1134-1144.</Citation>
</Reference>
<Reference>
<Citation>Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. and Minh, B.Q. (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44(W1), W232-W235.</Citation>
</Reference>
<Reference>
<Citation>Thorpe, P., Mantelin, S., Cock, P.J.A. et al. (2014) Characterisation of the full effector complement of the potato cyst nematode Globodera pallida. BMC Genom., 15, 923.</Citation>
</Reference>
<Reference>
<Citation>Vanholme, B., Haegeman, A., Jacob, J., Cannooot, B. and Gheysen, G. (2009) Arabinogalactan endo- 1,4- beta- galactosidase: a putative plant cell wall-degrading enzyme of plant parasitic nematodes. Nematology, 11, 739-747.</Citation>
</Reference>
<Reference>
<Citation>Vogel, J. (2008) Unique aspects of the grass cell wall. Curr. Opin. Plant Biol. 11, 301-307.</Citation>
</Reference>
<Reference>
<Citation>Wang, X., Mitchum, M.G., Gao, B., Li, C., Diab, H., Baum, T.J., Hussey, R.S. and Davis, E.L. (2005) A parasitism gene from a plant-parasitic nematode with function similar to CLAVATA3/ESR (CLE) of Arabidopsis thaliana. Mol. Plant Pathol. 6, 187-191.</Citation>
</Reference>
<Reference>
<Citation>Wang, J., Joshi, S., Korkin, D. and Mitchum, M.G. (2010) Variable domain I of nematode CLEs directs post-translational targeting of CLE peptides to the extracellular space. Plant Signal. Behav. 5(12), 1633-1635.</Citation>
</Reference>
<Reference>
<Citation>Wang, J., Lee, C., Replogle, A., Joshi, S., Korkin, D., Hussey, R., Baum, T.J., Davis, E.L., Wang, X. and Mitchum, M.G. (2010a) Dual roles for the variable domain in protein trafficking and host-specific recognition of Heterodera glycines CLE effector proteins. New Phytol. 187, 1003-1017.</Citation>
</Reference>
<Reference>
<Citation>Yang, Y. and Smith, S.A. (2013) Optimizing de novo assembly of short-read RNA-seq data for phylogenomics. BMC Genom., 14, 328.</Citation>
</Reference>
<Reference>
<Citation>Zhang, Y., Yang, S., Song, Y. and Wang, J. (2014) Genome-wide characterization, expression and functional analysis of CLV3/ESR gene family in tomato. BMC Genom., 15(1), 827.</Citation>
</Reference>
<Reference>
<Citation>Zheng, M., Long, H., Zhao, Y. et al. (2015) RNA-Seq based identification of candidate parasitism genes of cereal cyst nematode (Heterodera avenae) during incompatible infection to Aegilops variabilis. PLoS One, 10, e0141095.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Inde</li>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Angleterre de l'Est</li>
<li>District de Cologne</li>
<li>Rhénanie-du-Nord-Westphalie</li>
</region>
<settlement>
<li>Bonn</li>
<li>Cambridge</li>
</settlement>
<orgName>
<li>Université de Cambridge</li>
</orgName>
</list>
<tree>
<country name="Allemagne">
<region name="Rhénanie-du-Nord-Westphalie">
<name sortKey="Pokhare, Somnath S" sort="Pokhare, Somnath S" uniqKey="Pokhare S" first="Somnath S" last="Pokhare">Somnath S. Pokhare</name>
</region>
<name sortKey="Elashry, Abdelnaser" sort="Elashry, Abdelnaser" uniqKey="Elashry A" first="Abdelnaser" last="Elashry">Abdelnaser Elashry</name>
<name sortKey="Grundler, Florian M W" sort="Grundler, Florian M W" uniqKey="Grundler F" first="Florian M W" last="Grundler">Florian M W. Grundler</name>
<name sortKey="Habash, Samer S" sort="Habash, Samer S" uniqKey="Habash S" first="Samer S" last="Habash">Samer S. Habash</name>
</country>
<country name="Inde">
<noRegion>
<name sortKey="Pokhare, Somnath S" sort="Pokhare, Somnath S" uniqKey="Pokhare S" first="Somnath S" last="Pokhare">Somnath S. Pokhare</name>
</noRegion>
</country>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Thorpe, Peter" sort="Thorpe, Peter" uniqKey="Thorpe P" first="Peter" last="Thorpe">Peter Thorpe</name>
</noRegion>
<name sortKey="Eves Van Den Akker, Sebastian" sort="Eves Van Den Akker, Sebastian" uniqKey="Eves Van Den Akker S" first="Sebastian" last="Eves-Van Den Akker">Sebastian Eves-Van Den Akker</name>
<name sortKey="Hedley, Pete" sort="Hedley, Pete" uniqKey="Hedley P" first="Pete" last="Hedley">Pete Hedley</name>
<name sortKey="Jones, John T" sort="Jones, John T" uniqKey="Jones J" first="John T" last="Jones">John T. Jones</name>
<name sortKey="Jones, John T" sort="Jones, John T" uniqKey="Jones J" first="John T" last="Jones">John T. Jones</name>
<name sortKey="Morris, Jennifer" sort="Morris, Jennifer" uniqKey="Morris J" first="Jennifer" last="Morris">Jennifer Morris</name>
<name sortKey="Thorpe, Peter" sort="Thorpe, Peter" uniqKey="Thorpe P" first="Peter" last="Thorpe">Peter Thorpe</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000052 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000052 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32623778
   |texte=   Signatures of adaptation to a monocot host in the plant-parasitic cyst nematode Heterodera sacchari.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32623778" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020